

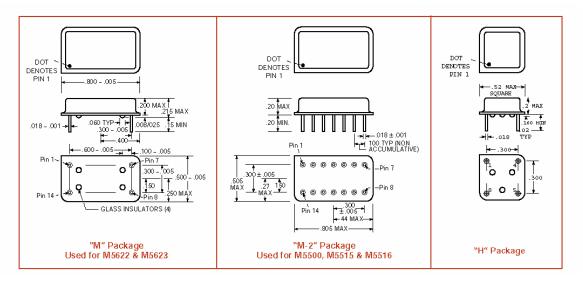
M5500 Series Crystal Oscillators HCMOS 5V Thru-Hole High Reliability 1 Hz to 125 MHz

Extended Temperature Hi-Rel Product Specification

Features

- Hermetically sealed half size or full size DIL package
- Crystal angle controlled to +/-1 minute for excellent temperature stability
- 168 hour Class B burn-in and extensive environmental testing for best performance in rugged field environments
- Start-up time less than 10 ms, typical
- Serialized test data available

Typical Applications


Thru-hole PCB projects requiring high reliability HCMOS clock waveforms

Description

These high reliability oscillators provide HCMOS clock waveforms for applications subjected to the most stringent environmental conditions. They are through-hole mechanically robust oscillators. The "M-2" package has 14 pins which provides greater holdability onto the pc board. Each oscillator is burned-in at 125°C for 168 hours, temperature cycled and centrifuged and fully tested in accordance with Table 1. Reliability tests are performed per Table 2. The calculated MTBF is 1.4 X 10⁶ hours at 125°C.

XO

Full Size		Half Size		Operating	Frequency Stability
Model	Package	Model	Package	Temperature	
M5500, M5516	M-2			-55 to +125°C	+/-75 ppm
M5515	M-2			0 to 70°C	+/-50 ppm
M5622	М	H5622	Н	-55 to +85°C	+/-50 ppm
M5623	Μ	H5623	Н	-55 to +125°C	+/-75 ppm

/alpey Fisher Corporation "Creating Harmony In Time"

M5500 Series

Crystal Oscillators HCMOS 5V Thru-Hole High Reliability 1 Hz to 125 MHz

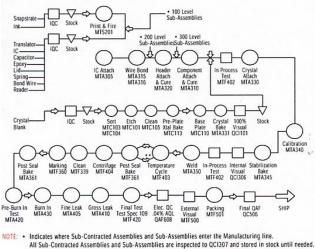
ELECTRICAL SPECIFICATIONS

Frequency Range

M5500, M5515, M5516, M5622, M5623-1 Hz to 125 MHz H5622, H5623-1KHz to 125 MHz

Frequency Stability

Includes calibration at 25°C, operating temperature, change of input voltage, change of load, shock and vibration.

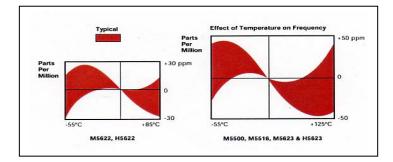

	MIN	ТҮР	MAX	UNITS
Input Voltage,	4.5	5.0	5.5	volts
Input Current				
Frequency at 1 KHz or above		30	55	mA
Frequency below 1 KHz		35	60	mA
Frequency Accuracy	See Preceding Table			
Waveform Symmetry				
Measured at 1.5V	40/60		60/40	percent
Rise and Fall Times				
Below 10 MHz				
0.8 to 2.4volts		5	15	ns
10 MHz and above,				
0.8 to 2.4 volts		2	5	ns
"Zero" Level,				
Sinking 16 mA			0.5	volts
"One" Level				
Sourcing 400 microAmps	4.5			volts
Sourcing to 10 TTL loads	2.5			volts
Frequency Change				
From +5.5 to +5.0V		+/-5	+/-10	ppm
From +4.5 to +5.0V		+/-5	+/-10	ppm
Aging				
First year		3		ppm
After first year		1		ppm/yr
ENVIRONMENTAL SPECIFIC	ATIONS			

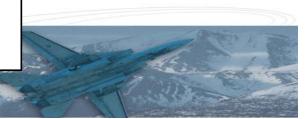
Pin	M5500	M5515, M5516	M5622,
			M5623
1.	Case	N.C	Case & Electrical Ground
2.	N.C.	N.C.	Pins 2 thru 6 are
3.	N.C.	N.C	not present
4.	N.C.	N.C.	
5.	N.C.	N.C.	
6.	N.C.	N.C.	
7.	Electrical Ground	Case & Electrical Ground	Case & Electrical Ground
8.	Output	Output	Output
9.	N.C.	N.C.	Pins 9 thru 13 are not present
10.	N.C.	N.C.	
11.	N.C.	N.C.	1
12.	N.C.	N.C.	
13.	N.C.	N.C.	
14.	$+5V, V_{DD}$	$+5V, V_{DD}$	$+5V, V_{DD}$

CONNECTIONS

	Half Size
Pin 1.	Not Used
Pin 4.	Ground and Case
Pin 5.	Output
Pin 8.	$+5V, V_{DD}$

PROCESSING FLOW CHART




.. Indicates Post Seal Bake and Temperature Cycle Processes may be performed in reverse order.

Valpey Fisher Corporation • 75 South Street, Hopkinton, MA 01748 • Tel. 1-800-XTALREP, 508-435-6831 • FAX 508 4355289 2 Rev 1.0 11/04

ENVIRONMENTAL SPECIFICATIONS

Shock- MIL-STD 883, Method 2002, Test Condition B (1500 peak g, 0.5 ms duration, $\frac{1}{2}$ sine wave, 5 shocks in 6 planes) Vibration- MIL-STD 883, Method 2007, Test Condition A (20-2000 Hz of .06" d.a. or 20 Gs, whichever is less) Humidity- Resistant to 85° R.H. at 85°C

Valpey Fisher Corporation

M5500 Series Crystal Oscillators HCMOS 5V Thru-Hole High Reliability 1 Hz to 125 MHz

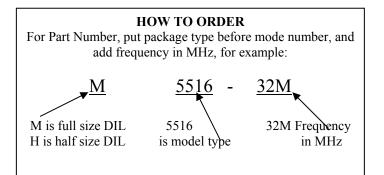
MECHANICAL DESCRIPTION

Case- Stainless Steel

Marking- Valpey part number, date code, serial number and description. Markings will withstand MIL-STD 202, Method 215.

Optional Marking- Customer part number if required **Leads-** Kovar, nickel plated, gold flash **Shock-** MIL-STD 883, Method 2002, Test Condition B **Vibration-** MIL-STD 883, Method 2007, Test Condition A

TABLE 1


Each unit undergoes the following:

8	0
1. Stabilization Bake	MIL-STD-883 Method 1008, Cond. B
2. Temperature Cycling	MIL-STD-883 Method 1010, Cond B
3. Centrifuge	MIL-STD-883 Method 2001, Cond. A
4. Burn-in	MIL-STD-1015 1015, Cond. B
	(125°C for 168 hours with bias)
5. Fine Leak	MIL-STD-883 Method 1014, Cond. A1
6. Gross Leak	MIL-STD-883, Method 1014, Cond. C
7. Electrical Test at 25°C	and temperature extremes, as follows:

Α.	Frequency*	F. Duty Cycle (FL)
В.	Current	G. Frequency at 5.5V
C.	Rise Time (FL)	H. Frequency at 4.5V
D.	Fall Time (FL)	I. "Zero" logic level
E.	Duty Cycle (NL)	J. "One" logic level

*Within 75 ppm from -55 to +125°C (M5500, M5516 and M5623)

Within 50 ppm from 0 to +70°C (M5515) Within 50 ppm from -55 to +85°C (M5622)

OUARTZ CRYSTAL OSCILLATORS 1. Group A Electrical Characteristics at -55°, (0° for '5515), 25° and 125° (70° for M5515 and 85° for M5622) Frequency @ 4.5, 5.0 and 5.5 volts (for 5 volts units) Symmetry (Duty Cycle) Input current Zero/One levels Rise/Fall times Physical Dimensions Length/width Height Package finish (Corrosion, discoloration, etc.) Marking placement/legibility **Group B- Life Test** II. 1000 hrs at 125°C with bias and load Group C- All units have passed Group A testing III. Subgroup 1-8 pcs. A. Condition Standard Description End point measurement MIL-STD-883 Method 2002 Mechanical Shock Frequency COND.B 1500 g's, 5ms Output Waveform 5 drops, 6 axis MIL-STD-883 Method 2007 Vibration, var. Frequency COND. A. freq. 20 g's, Output waveform .06" disp., 20-20, 000-20 Hz MIL-STD-883 Method 2003 Solderability Visual 95% coverage Subgroup 2-4 pcs (One-half of Subgroup 1) B. MIL-STD-883 Method 1011 Thermal Shock Frequency COND. B Liq. To liq. Output waveform 15 cycles MIL-STD-202 Method 105 Altitude, 3.44 Frequency Output waveform COND. B inch Hg. 12 hrs MIL-STD-883 Method 1004 Moisture resist. Frequency With 5V applied Output waveform 25-65°C, 90 to 100% RH, 10 cycles MIL-STD-202 Method 210 Resistance to Frequency COND.A Solder Heat Output waveform Immersion @350°C 3.5 sec C.Subgroups 3-4 pcs. (One half of Subgroup 1) Condition Standard Description End point measurement Storage Temp. 24 hrs. @ -55°C Frequency No. Oper 24 hrs. @ 125°C Output waveform Method 1009 MIL-STD-883 Salt Atmosphere Frequency COND. A 24 hrs. @ 35°C Output waveform .5-3.0% Solution Visual Method 1014 Qs <5 X10-8 Fine Leak MIL-STD-883 COND. B

Gross Leak

Visual in 125°C

Detector fluid

TABLE 2- RELIABILITY TEST PROCEDURE AND CONDITIONS FOR

Method 1014

COND. C

MIL-STD-883